Propeller: A Profile Guided, Relinking Optimizer for
Warehouse-Scale Applications

Han Shen” Krzysztof Pszeniczny”
Google Google
USA Switzerland

shenhan@google.com kpszeniczny @google.com

Snehasish Kumar* Sriraman Tallam*

Google Google
USA USA
sneaky@google.com tmsriram@google.com

Rahman Lavaee*
Google
USA
rahmanl@google.com

Xinliang David Li*
Google
USA
davidxl@google.com

Propeller

2023 412 A 17 8

m Post Link Optimizers: Why and What?
m Why doesn’t state-of-the-art measure up?
= How have we made Propeller scale?

Propeller 2023 412 A 17 8 1/14

PGO is great but there is room!

m Peak Optimized binaries built with PGO and ThinLTO
m Profile Guided Optimizations (PGO): > 10% on production binaries
m Cross-module optimizations with ThinLTO:-3% production binaries
m PGO passes suffer from profile imprecision
m 3% performance dropped, imprecise code layout!
m Binary level optimizations cannot be done

m DSB alignment misses
m Inter-procedural Register spill removal, caller-callee semantics
m Inserting Prefetch Instructions

Propeller 2023 412 A 17 8

Post Link Optimizers

m What is a Post Link Optimizer? (Compared to Regular PGO)

m Does not re-compile, directly optimize the binary
m Disassemble, optimize and rewrite, eg: META's BOLT

m Targeted Optimizations
m Code Layout recovers the lost performance due to profile
imprecision
m Profile Guided: Precise profiles on a highly optimized binary
m Context and Flow Sensitive
m New class of optimizations are possible
m Precise Prefetch Insertion, Code Alignment,...

Propeller 2023 412 A 17 8

m Post Link Optimizers: Why and What?
m Why doesn’t state-of-the-art measure up?
= How have we made Propeller scale?

Propeller 2023 412 A 17 8 4/14

Build Scalability - Peak RAM hard limits

m Google’s Distributed Build System

m 5M binary and test builds per day, 15M actions executed daily
m 50K+ developers and 3 billion LOC, fast turnaround times

m Artifacts: Content based caching, 90% hit rate

m 12G memory limit for most processes

m Chromium Builds

m 10G limit per linker process for ThinLTO
m Debug Fission

m Goals: Scalability, Incremental Builds
m ThinLTO

m Scalable LTO
m Whole Program Optimization: Enabled broader adoption

Propeller 2023 412 A 17 8

State-of-the-art does not scale!

m Single Process, Multi-threaded Optimizers don’t scale with
binary sizes!
m Do not take advantage of Distributed Build Systems
m Extremely painful to re-engineer & distribute these actions

246 366 736
[Baseline 12

30{ == Propeller =3 Propeller
== BOLT == BOLT

&
s

Peak memory usage (in GB)
5 8

Peak memory usage (in GB)
o = B

j:l
=
|

Wﬂﬁﬂm]

Clang MySQL Spanner Search Superroot Bigtable Clang MySQL Spanner Search Superroot Bigtable

Figure: Peak memory usage for Pro- Figure: Peak memory usage during
peller (Phase 4), BOLT optimiz- profile conversion and whole
ations and baseline link action. program analysis.

Propeller 2023 412 A 17 8

Disassembly and Rewrite Issues!

m Standalone Binary Optimizers re-engineer the tool chain
m Redundancy: Debug Info Parse & Rewrite, CF| Parse & Rewrite
m Downstream & not integrated, ABI & tool-chain compatibility

m BOLT doesn’t honor RSEQ (Kernel Restartable Sequences)

m Cryptographic modules should not be rewritten
m Strict startup integrity checks

m BOLT binaries couldn’t be stripped

m Misaligned PT_LOADS crashes binary
m Upstream Arguments on whether this is a ABI problem

Propeller 2023 412 A 17 8

m Post Link Optimizers: Why and What?
m Why doesn’t state-of-the-art measure up?
= How have we made Propeller scale?

Propeller 2023 412 A 17 8 8/14

Propeller Design Philosophy

m Guiding Principles
m No Disassembly, Distributed Actions => Memory Overheads below
thresholds
m Integrated with the tool chain, not a standalone tool!
m Lightweight Whole Program Analysis is the key!
m RELINK as opposed to REWRITE
m Summary based Analysis-Inspired by ThinLTO
m Build Artifacts cached, no disassembly required
m Relink previous optimized IR after applying post link
transformations (Backend Actions)
m Backend Actions can be distributed
m Naturally fits with distributed build systems
m Framework for Post Link Optimizations

m Currently, only code layout is available
m Working on Inter-proc. Register allocation, code prefetching

Propeller 2023 412 A 17 8

Propeller Design

Hot cached IR objects

|
i
' |
i i '
i i '
L s 1o | [Hardware '
> Backend ™ b map ' Profile ' s_tir
i | \
I) '
5

L coido)) | | & N aout Whole Program H
H = bb map :E(bbmap) | Analyser !
| H ' | Rcache
H bb map ! !

IR Cache 1 1 Id_profitxt | 1
! Obj Cache ! 1
i i '
! | 1 n
i i
] : Cold cached native objects
i i

Phase 1 i Phase 2 ' Phase 3 : Phase 4
Compile and Cache ! Build with metadata ! Profile and WPA ! Relink

Figure 1: Design of a Profile Guided, Relinking Optimizer

Propeller 12717 8

Basic Block Sections - Easy Code Layout

[BB 2:]
8
ot 2
%
£ fo0 loop 1
/ 'J -bar
p BB_2
i
Too.cold 1: BB_1: #cold 2
callg R1 callg R1 8
incl %ebx %
rot imp BB 2 o

Figure 3: Optimal intra-function (L) and inter-function (R)
layout. Hotter edges are shown by thicker lines.

Figure 2: Original function layout (L), Splitting via
function call (C), Splitting with basic block sections (R)

Propeller

Performance Improvements

Table 3: Performance improvements of Propeller and
BOLT optimized binaries over PGO and ThinLTO.

% Improvements

Benchmark | Metric

Propeller | BOLT
Clang Walltime 73% | 73%
MySQL Latency 1% | 08%
Spanner Latency 7% | Crash
Search QPS 3% 4%
Superroot QPS 1.1% | Crash
Bigtable QPS 3% | Crash

Propeller 2023 412 A 17 8 12/14

Peak RAM Build Actions

24G 36G 73G
= Baseline m 1 —
30{ B3 Propeller = Propeller
_ | == sotT 1| == BOLT
a —
25 a
< £
=8
& o
52 H
> £
> 36
§15 2
§ g
g g
4
§10 3
£
5 r—v—ﬂ r—v—ﬂ Z F
Clang MySQL Spanner Search Superroot Bigtable Clang MySQL ~ Spanner Search Superroot Bigtable

Figure: Peak memory usage for Propeller Figure: Peak memory usage during profile

(Phase 4), BOLT optimizations and conversion and whole program
baseline link action. analysis.

Propeller 2023 412 A 17 8

Final Thoughts - Hardware Software Codesign

Post Link Optimizers can play an important role

How can the PMU be enhanced to provide more useful
information?

m Last Branch Record (LBR) has been a game changer
m What other counter information can we use?
m Lightweight Whole Program Analysis is the key!

Prefetch and Cache line demote instructions
DSB: more information to guide precise alignment

Branch Prediction

m Hardware provides more information to guide optimizations
m Compiler inserts hints that in branch instructions that predictors
can exploit

Propeller 2023 412 A 17 8

