
张天祎 Propeller 2023年 12月 17日 1 / 14



Post Link Optimizers: Why and What?
Why doesn’t state-of-the-art measure up?
How have we made Propeller scale?

张天祎 Propeller 2023年 12月 17日 1 / 14



PGO is great but there is room!

Peak Optimized binaries built with PGO and ThinLTO
Profile Guided Optimizations (PGO): > 10% on production binaries
Cross-module optimizations with ThinLTO:-3% production binaries

PGO passes suffer from profile imprecision
3% performance dropped, imprecise code layout!

Binary level optimizations cannot be done
DSB alignment misses
Inter-procedural Register spill removal, caller-callee semantics
Inserting Prefetch Instructions

张天祎 Propeller 2023年 12月 17日 2 / 14



Post Link Optimizers

What is a Post Link Optimizer? (Compared to Regular PGO)
Does not re-compile, directly optimize the binary
Disassemble, optimize and rewrite, eg: META’s BOLT

Targeted Optimizations
Code Layout recovers the lost performance due to profile
imprecision

Profile Guided: Precise profiles on a highly optimized binary
Context and Flow Sensitive

New class of optimizations are possible
Precise Prefetch Insertion, Code Alignment,...

张天祎 Propeller 2023年 12月 17日 3 / 14



Post Link Optimizers: Why and What?
Why doesn’t state-of-the-art measure up?
How have we made Propeller scale?

张天祎 Propeller 2023年 12月 17日 4 / 14



Build Scalability - Peak RAM hard limits

Google’s Distributed Build System
5M binary and test builds per day, 15M actions executed daily
50K+ developers and 3 billion LOC, fast turnaround times
Artifacts: Content based caching, 90% hit rate
12G memory limit for most processes

Chromium Builds
10G limit per linker process for ThinLTO

Debug Fission
Goals: Scalability, Incremental Builds

ThinLTO
Scalable LTO
Whole Program Optimization: Enabled broader adoption

张天祎 Propeller 2023年 12月 17日 5 / 14



State-of-the-art does not scale!

Single Process, Multi-threaded Optimizers don’t scale with
binary sizes!
Do not take advantage of Distributed Build Systems

Extremely painful to re-engineer & distribute these actions

Figure: Peak memory usage for Pro-
peller (Phase 4), BOLT optimiz-
ations and baseline link action.

Figure: Peak memory usage during
profile conversion and whole
program analysis.

张天祎 Propeller 2023年 12月 17日 6 / 14



Disassembly and Rewrite Issues!

Standalone Binary Optimizers re-engineer the tool chain
Redundancy: Debug Info Parse & Rewrite, CFI Parse & Rewrite
Downstream & not integrated, ABI & tool-chain compatibility

BOLT doesn’t honor RSEQ (Kernel Restartable Sequences)
Cryptographic modules should not be rewritten

Strict startup integrity checks
BOLT binaries couldn’t be stripped

Misaligned PT_LOADS crashes binary
Upstream Arguments on whether this is a ABI problem

张天祎 Propeller 2023年 12月 17日 7 / 14



Post Link Optimizers: Why and What?
Why doesn’t state-of-the-art measure up?
How have we made Propeller scale?

张天祎 Propeller 2023年 12月 17日 8 / 14



Propeller Design Philosophy

Guiding Principles
No Disassembly, Distributed Actions => Memory Overheads below
thresholds
Integrated with the tool chain, not a standalone tool!
Lightweight Whole Program Analysis is the key!

RELINK as opposed to REWRITE
Summary based Analysis-Inspired by ThinLTO
Build Artifacts cached, no disassembly required
Relink previous optimized IR after applying post link
transformations (Backend Actions)

Backend Actions can be distributed
Naturally fits with distributed build systems

Framework for Post Link Optimizations
Currently, only code layout is available
Working on Inter-proc. Register allocation, code prefetching

张天祎 Propeller 2023年 12月 17日 9 / 14



Propeller Design

张天祎 Propeller 2023年 12月 17日 10 / 14



Basic Block Sections - Easy Code Layout

张天祎 Propeller 2023年 12月 17日 11 / 14



Performance Improvements

张天祎 Propeller 2023年 12月 17日 12 / 14



Peak RAM Build Actions

Figure: Peak memory usage for Propeller
(Phase 4), BOLT optimizations and
baseline link action.

Figure: Peak memory usage during profile
conversion and whole program
analysis.

张天祎 Propeller 2023年 12月 17日 13 / 14



Final Thoughts - Hardware Software Codesign

Post Link Optimizers can play an important role
How can the PMU be enhanced to provide more useful
information?

Last Branch Record (LBR) has been a game changer
What other counter information can we use?
Lightweight Whole Program Analysis is the key!

Prefetch and Cache line demote instructions
DSB: more information to guide precise alignment
Branch Prediction

Hardware provides more information to guide optimizations
Compiler inserts hints that in branch instructions that predictors
can exploit

张天祎 Propeller 2023年 12月 17日 14 / 14


