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m Post Link Optimizers: Why and What?
m Why doesn’t state-of-the-art measure up?
= How have we made Propeller scale?
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PGO is great but there is room!

m Peak Optimized binaries built with PGO and ThinLTO
m Profile Guided Optimizations (PGO): > 10% on production binaries
m Cross-module optimizations with ThinLTO:-3% production binaries
m PGO passes suffer from profile imprecision
m 3% performance dropped, imprecise code layout!
m Binary level optimizations cannot be done

m DSB alignment misses
m Inter-procedural Register spill removal, caller-callee semantics
m Inserting Prefetch Instructions
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Post Link Optimizers

m What is a Post Link Optimizer? (Compared to Regular PGO)

m Does not re-compile, directly optimize the binary
m Disassemble, optimize and rewrite, eg: META's BOLT

m Targeted Optimizations
m Code Layout recovers the lost performance due to profile
imprecision
m Profile Guided: Precise profiles on a highly optimized binary
m Context and Flow Sensitive
m New class of optimizations are possible
m Precise Prefetch Insertion, Code Alignment,...
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Build Scalability - Peak RAM hard limits

m Google’s Distributed Build System

m 5M binary and test builds per day, 15M actions executed daily
m 50K+ developers and 3 billion LOC, fast turnaround times

m Artifacts: Content based caching, 90% hit rate

m 12G memory limit for most processes

m Chromium Builds

m 10G limit per linker process for ThinLTO
m Debug Fission

m Goals: Scalability, Incremental Builds
m ThinLTO

m Scalable LTO
m Whole Program Optimization: Enabled broader adoption
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State-of-the-art does not scale!

m Single Process, Multi-threaded Optimizers don’t scale with
binary sizes!
m Do not take advantage of Distributed Build Systems
m Extremely painful to re-engineer & distribute these actions
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Disassembly and Rewrite Issues!

m Standalone Binary Optimizers re-engineer the tool chain
m Redundancy: Debug Info Parse & Rewrite, CF| Parse & Rewrite
m Downstream & not integrated, ABI & tool-chain compatibility

m BOLT doesn’t honor RSEQ (Kernel Restartable Sequences)

m Cryptographic modules should not be rewritten
m Strict startup integrity checks

m BOLT binaries couldn’t be stripped

m Misaligned PT_LOADS crashes binary
m Upstream Arguments on whether this is a ABI problem
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Propeller Design Philosophy

m Guiding Principles
m No Disassembly, Distributed Actions => Memory Overheads below
thresholds
m Integrated with the tool chain, not a standalone tool!
m Lightweight Whole Program Analysis is the key!
m RELINK as opposed to REWRITE
m Summary based Analysis-Inspired by ThinLTO
m Build Artifacts cached, no disassembly required
m Relink previous optimized IR after applying post link
transformations (Backend Actions)
m Backend Actions can be distributed
m Naturally fits with distributed build systems
m Framework for Post Link Optimizations

m Currently, only code layout is available
m Working on Inter-proc. Register allocation, code prefetching
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Propeller Design

Hot cached IR objects
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Figure 1: Design of a Profile Guided, Relinking Optimizer
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Basic Block Sections - Easy Code Layout
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Figure 3: Optimal intra-function (L) and inter-function (R)
layout. Hotter edges are shown by thicker lines.

Figure 2: Original function layout (L), Splitting via
function call (C), Splitting with basic block sections (R)
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Performance Improvements

Table 3: Performance improvements of Propeller and
BOLT optimized binaries over PGO and ThinLTO.

% Improvements

Benchmark | Metric

Propeller | BOLT
Clang Walltime 73% | 73%
MySQL Latency 1% | 08%
Spanner Latency 7% | Crash
Search QPS 3% 4%
Superroot QPS 1.1% | Crash
Bigtable QPS 3% | Crash
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Peak RAM Build Actions
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Final Thoughts - Hardware Software Codesign

Post Link Optimizers can play an important role

How can the PMU be enhanced to provide more useful
information?

m Last Branch Record (LBR) has been a game changer
m What other counter information can we use?
m Lightweight Whole Program Analysis is the key!

Prefetch and Cache line demote instructions
DSB: more information to guide precise alignment

Branch Prediction

m Hardware provides more information to guide optimizations
m Compiler inserts hints that in branch instructions that predictors
can exploit
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